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Multiplicity Result for a Scalar Field
Equation on Compact Surfaces
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We consider a scalar field equation on compact surfaces which has variational
structure. When the surface is a torus and a physical parameter � belongs to
�8�� 4�2� we show under some extra assumptions that, besides a local minimum, the
functional admits at least other two saddle points.
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1. Introduction

Let ��� g� be a compact Riemann surface without boundary and with volume
equal to 1.

In this paper we consider the following mean field equation:

−�gu+ � = �
h�x�eu∫

�
h�x�eudVg

x ∈ �� u ∈ H1���� (1.1)

where h ∈ C���� is a positive function and � a real parameter.
This problem arises in statistical mechanics as a mean field equation for the

Euler flow. More precisely, it has been proved in [5, 21] that, according to Onsager’s
vortex model, when the number of vortices is supposed to tend to +�, the stream
function satisfies (1.1). In this interpretation the exponential is related to the Gibbs
measure, which is finite provided � > −8�.

This PDE also concerns the description of self-dual condensates of some
Chern–Simon–Higgs model; indeed via its solutions it is possible to describe
the asymptotic behavior of a class of condensates (or multivortex) solutions
which are relevant in theoretical physics and which were absent in the classical
(Maxwell–Higgs) vortex theory (see [34, 35]).
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Multiplicity Result 2209

Besides, equation (1.1) is geometrically meaningful because it is related to the
problem of prescribing the Gauss curvature, Kg, of a surface � via a conformal
transformation of the metric. In fact, considering the conformal metric g̃ = e2wg
(with � � � → � smooth), the Gauss curvature transforms by

−�gw + Kg = Kg̃e
2w	

In this context, of particular interest is the classical Uniformization Theorem,
which asserts that every compact surface carries a conformal metric with constant
curvature. Viceversa, given a surface with constant curvature one may ask whether
it is possible to obtain conformal metrics for which the Gauss curvature becomes
a given function. The latter is known as the Kazdan–Warner problem, or as the
Nirenberg problem when � is the standard sphere (see for example [7, 8, 20]).

Problem (1.1) has a variational structure and solutions can be found as critical
points of the functional

I��u� =
1
2

∫
�
�
gu�2dVg + �

∫
�
u dVg − � log

∫
�
h�x�eudVg u ∈ H1���	 (1.2)

Since equation (1.1) is invariant adding constants to u, we can restrict ourselves
to the subspace H

1
��� ⊂ H1��� of the functions with zero average; so we will

sometimes omit the second term in I�.
When � ≤ 0, existence and uniqueness of critical points for (1.2) follow easily.

Hence we shall focus on the more interesting case � > 0. A consequence of the
Moser–Trudinger inequality, see (2.1), is that, if � ∈ �0� 8��, the functional I� is
bounded from below and coercive; thus solutions can be found as global minima.

When � > 8�, as I� is unbounded both from above and below, solutions
have to be found as saddle points. In [15] Ding, Jost, Li and Wang proved that,
assuming � ∈ �8�� 16�� and assuming that the genus of the surface is greater or
equal to 1, there exists a solution to (1.1). In [24], Lin studied the case of the
2-sphere for �∈ �8�� 16�� by computing the Leray–Schauder degree for equation
(1.1) (this degree does not depend on h and is always equal to −1). When
�∈ �16�� 24��, Lin also proved that the degree on S2 is equal to 0, so the author
was not able to conclude the existence of a solution. More generally, Chen and Lin
[12] computed the Leray–Schauder degree for (1.1) for any � �= 8��. By means of
this formula they deduced that, when the genus of � is positive, the degree is non
zero and (1.1) admits a solution. In [28], Malchiodi presented a more direct proof
and an interpretation of the degree formula obtained in [12]. Finally, when � �= 8k�
(k ∈ �), Djadli [16] generalized these previous results establishing the existence of a
solution for any ��� g�, [16]; to do that he deeply investigated the topology of low
sublevels of I� in order to perform a min-max scheme (already introduced in Djadli
and Malchiodi [17]).

It is worth pointing out that is not known whether the Palais–Smale condition
holds for the functional I�, anyhow the problem can be bypassed using a method
introduced by Struwe which exploits the monotonicity in � of I�

�
. In this way it is

possible to get existence for almost every � ∈ �8�� 16��. Then a crucial compactness
property (Theorem 2.7), due to Li [22], which relies on some quantization results in
[4] and [23], allows to obtain solutions for every � 	 8��.

A variant of Struwe’s method is due to Lucia [26] (see also Lemma 2.6 below),
who presented a version of the classical Deformation lemma which holds true for I�.
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2210 De Marchis

If � is an integer multiple of 8� the existence problem of (1.1) is much harder.
Already the case � = 8� is more delicate since I� still has a lower bound but it is
not coercive anymore (a far from complete list of references on the subject includes
works by Chang and Yang [7], Chang, Gursky and Yang [8], Chen and Li [9],
Nolasco and Tarantello [31], Ding, Jost, Li and Wang [14], Lucia [25] and references
therein).

In the present paper we want to generalize a result by Struwe and
Tarantello [33], dealing with the case of the flat torus T with h ≡ 1 and � varying
in the range �8�� 4�2�. In these hypotheses, u = 0 is clearly a solution of

−�u+ � = �
eu∫

T
eudx

� (1.3)

moreover because of the fact that, when � ∈ �8�� 4�2�, u = 0 is a strict local
minimum for I� (see (3.1) below), the authors were able to exhibit a mountain-pass
structure and to prove the existence of another solution of (1.3).

Theorem 1.1 ([33]). Let � be the flat torus and let h ≡ 1. Then, for every �∈ �8�� 4�2�,
there exists a non-trivial solution u� of (1.3) satisfying I��u�� ≥

(
1− �/4�2

)
c0 for some

constant c0 > 0 independent of �.

Perturbing h and g the functional I� will still have a strict local minimum,
ū, in a neighborhood of 0 and the same arguments allow to find a saddle point.
We improve this result stating that, apart from ū, there are at least two critical
points. Under the assumptions of Theorem 1.1 there are indeed infinitely-many non
trivial solutions, arising from the translations in T of any given one. We show that
indeed a multiplicity persists for generic data.

Theorem 1.2. If � ∈ �8�� 4�2� and � = T is the torus, if the metric g is sufficiently
close in C2�T� S2×2� to dx2 and h is uniformly close to the constant 1, I� admits a point
of strict local minimum and at least two different saddle points.

Remark 1.3. For the result of Theorem 1.2 to hold it is sufficient that the
functional I� possesses a strict local minimum.

In the above statement S2×2 stands for the symmetric 2× 2 matrices on T .
To prove Theorem 1.2 we construct a new functional Ĩ� which has the same critical
points as I� and which coincides with I� away from the minimum, ū, where it takes
very negative values. In such a way we enrich the topology of low sublevels of Ĩ�,
which in particular result disconnected.

Next, by taking advantage of the topological properties of low and high
sublevels of I�, studied in [17, 29], we find two levels, −L and b, such that the
number of critical points of Ĩ� in �−L ≤ Ĩ� ≤ b is at least two. To do this we
use the notion of Lusternik–Schnirelmann relative category (roughly speaking a
natural number measuring how a set is far from being contractible, when a subset
is fixed); in particular, defining a projection of �̃I� ≤ b in a homeomorphic image
of the topological cone constructed on T , we are able to reduce the problem to
the study of the category of a finite dimensional metric space. By our construction,
the two critical points produced for Ĩ� are also critical for Ĩ�, so the result follows.
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Multiplicity Result 2211

We actually expect that a third (non trivial) solution might exist, see Remark 3.3
for more precise comments.

In Section 2 we collect some useful material concerning compactness properties
for (1.1) and the topological structure of Ĩ�. In Section 3 we introduce the modified
functional Ĩ� and prove our multiplicity result.

2. Notation and Preliminaries

In this section we collect some facts needed in order to obtain the multiplicity result.
First of all we consider some improvements of the Moser–Trudinger inequality
which are useful to study the topological structure of the sublevels of I�. Next,
we state a deformation lemma, proved in [26], and a compactness property of
solutions of (1.1) derived in [22]. These last results, for � �= 8k�, allow us to
overcome the possible failure of the �PS�-condition and to get a counterpart of the
classical deformation lemma.

Let now fix our notation. The symbol Br�p� denotes the metric ball of radius r
and center p, while dist�x� y� stands for the distance between two points x, y ∈ �.
As already specified we set H

1
��� �= �u ∈ H1��� � ū �= ∫

�
u = 0, endowed with the

norm �u�
H

1
���

�= �
∫
�
�
gu�2dVg�

1
2 .

Large positive constants are always denoted by C, and the value of C is allowed
to vary from formula to formula.

Finally, given a smooth functional I � H1��� → � and a real number c, we set

Ic �= �u ∈ H1��� � I�u� ≤ c

Zc �= �u ∈ H1��� �DI�u� = 0 and I�u� = c	

2.1. The Moser–Trudinger Inequality and the Structure of Sublevels

First of all we recall the well-known Moser–Trudinger inequality on compact
surfaces.

Lemma 2.1 (Moser–Trudinger inequality). There exists a constant C, depending only
on ��� g� such that for all u ∈ H1���

∫
�
e

4��u−ū�2∫
� �
gu�2dVg ≤ C	 (2.1)

As a consequence one has for all u ∈ H1���

log
∫
�
e�u−ū�dVg ≤

1
16�

∫
�
�
gu�2dVg + C	 (2.2)

Chen and Li [10] from this result showed that if eu has integral controlled from
below (in terms of

∫
�
eudVg) into �l+ 1� distinct regions of �, the constant 1

16� can be
basically divided by �l+ 1�. Since we are interested in the behavior of the functional
when � ∈ �8�� 16��, it is sufficient to consider the case l = 1.
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2212 De Marchis

Lemma 2.2 [10]. Let �1, �2 be subsets of � satisfying dist��1��2� ≥ �0, where �0 is
a positive real number, and let �0 ∈ �0� 1

2 �. Then, for any �̃ > 0 there exists a constant
C = C��̃� �0� �0� such that

log
∫
�
e�u−ū�dVg ≤ C + 1

32�− �̃

∫
�
�
gu�2dVg

for all the functions satisfying ∫
�i
eudVg∫

�
eudVg

≥ �0� i = 1� 2	 (2.3)

Qualitatively, when � ∈ �8�� 16�� and (2.3) is satisfied, the functional I� stays
uniformly bounded from below. A consequence of this inequality is that, if I��u�
attains large negative values, eu has to concentrate at one point of �. Indeed, using
the previous Lemma and a covering argument, Ding, Jost, Li and Wang obtained
the following result (see [16, 17] or [29]).

Lemma 2.3. If � ∈ �8�� 16��, the following property holds. For any � > 0 and any
r > 0 there exists a large positive L = L��� r� such that, for every u ∈ H1��� with
I��u� ≤ −L, there exists a point p ∈ � such that

∫
�\Br �p�

eudVg∫
�
eudVg

< �	 (2.4)

Now we want to take advantage of the above improvement of Moser–Trudinger
inequality to characterize the topology of low sublevels. We first point out that �
can be mapped into very negative sublevels of I� and that this map turns out to be
non-trivial, in the sense that it carries some homology.

In order to do this, we need to define the functions �̃��x � � → � by

�̃��x�y� = log
(

�

1+ �2dx
2�y�

)2

� (2.5)

where � is a positive real parameter and dx�y� = dx�x� y�, x, y ∈ �. Clearly, since the
distance from a fixed point of � is a Lipschitz function, �̃��x�y� is also Lipschitz in y
and hence it belongs to H1���.

As we will work in H
1
���, we will consider the normalized functions

���x �= �̃��x − �̃��x and, for a fixed �, the set T� �= ����x � x ∈ �.
It is easy to see that (see e.g. [15]), as � → +�, I�����x�→−� uniformly for

x ∈ �; so once L > 0 is fixed, there exists � large enough such that ���x ∈ I−L
� for any

x ∈ �. In this way we get an immersion of � into arbitrarily low sublevels (x →���x).
On the other hand, thanks to Lemma 2.3, we know that for u ∈ I−L

� , L � 0, the
probability measure eudVg∫

�e
udVg

is concentrated near some point of �. Roughly speaking,
associating this point to u, we obtain a map from low sublevels into �

� � I−L
� → �	 (2.6)
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Multiplicity Result 2213

The construction of � relies on Whitney’s theorem; indeed, once considered an
embedding � � � → �m, it is possible to define in �m the barycenter of eu∫

�e
udVg

(always for u ∈ I−L
� ) as �̃ �u� �=

∫
���x�eudVg�x�∫

�e
udVg

. Moreover, when L � 0, since �̃ turns
out to belong to a sufficiently small neighborhood of ����, we are able to project
�̃ �u� on ���� (taking the closest point for example). Thus, just coming back via �,
we get � which turns out to be continuous (see [29] for details).

At last, since the composition of the former map with the latter can be taken to
be homotopic to the identity on �, the following result holds true.

Proposition 2.4. If � ∈ �8�� 16��, there exists L > 0 such that I−L
� is not contractible.

Remark 2.5. As mentioned before Lemma 2.2, when l > 1, the constant in (2.2) can
be taken arbitrarily close to 1

�l+1�16� .

In [16] and [29], analogously to Lemma 2.3, it is proved that when
�∈ �8k�� 8�k+ 1��� and I��u� is very negative, the probability measure eu∫

�e
udVg

concentrates near at most k points of �.
From these arguments, when � ∈ �8k�� 8�k+ 1���, we are led to consider the

family �k of formal barycenters of � of order k, which is the space of probability
measures whose supports are distributed in at most k points of �. By means
of �k, it is still possible to prove that there exists L > 0 such that I−L

� is not
contractible. The proof can be found in the aforementioned articles and this case
will be considered in a future paper.

2.2. A Deformation Lemma and a Compactness Result

It is well known that, if I ∈ C1�H
1
������ satisfies the Palais–Smale condition,

a classical deformation lemma ensures that we have the following alternative: either

1. Ia is a deformation retract of Ib �a < b�, or
2. there is a critical point ū for the functional I , with a ≤ I�ū� ≤ b.

This lemma, which is usually employed to derive existence of critical points, can be
obtained by considering the pseudo-gradient vector field associated to I .

Unfortunately, for our functional, I�, the �PS�-condition is known to hold only
for bounded sequences; Lucia in [26] overcomes this problem modifying the usual
flow. We present his result, combined with Theorem 4 of [13].

Lemma 2.6. Consider c ∈ � and let U ⊂ H
1
��� be an open neighborhood of Zc,

possibly empty. The following alternative holds: either

1. ∃� > 0 such that Ic+�
� \U can be deformed in Ic−�

� in a way that Ic−2�
� \U holds

steady, or
2. for any � > 0 there exists �n → �, �n ≤ �, such that I�n admits a critical point

un ∈H
1
���\U and c − � ≤ I��un� ≤ c + �.

By deformation retract onto A ⊂ X we mean a continuous map � � �0� 1�×
X → X such that ��t� u0� = u0 for every �t� u0� ∈ �0� 1�× A and such that ��1� ·��B is
contained in A.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
I
S
S
A
]
 
A
t
:
 
1
4
:
3
2
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
0
9



2214 De Marchis

To prove the lemma, one argues as follows: assuming the second alternative
false, let � > 0 be such that I�̃ has no critical point ū ∈ H

1
���\U for �̃ ∈ ��− �� ��,

with I�̃�ū� ∈ �a� b�. The strategy of the proof consists in constructing, under these
hypotheses, a flow which deforms Ib�\U onto a subset of Ia� by keeping bounded
every integral curve (with bounds depending on the initial datum, a, b and �).
To do this let Z be defined by:

Z�u� �= −��
J�u��
I��u�+ �
I��u��
J�u��� (2.7)

where J�u� = − log
∫
�
h�x�eudVg, u ∈ H

1
���.

Then choose a smooth non-decreasing cut-off function �� � � → �0� 1�
satisfying

0 ≤ �� ≤ 1� ����� = 0 ∀� ≤ �� ����� = 1 ∀� ≥ 2��

and consider the local flow � = ��t� u0� defined by the Cauchy problem:

dxu

dxt
= −��

( �
I��u��
�
J�u��

)

I��u�+ Z�u�� u�0� = u0� (2.8)

where ��

( �
I��u��
�
J�u�

)
is understood to be equal to 1 when 
J�u� = 0. A key point is to

notice that �Z�u�� 
I��u�� ≤ 0, and that if �Z�uk�� 
I��uk�� tends to zero along some
sequence �uk�k, then limk→�

Z�uk�

�
J�uk�� = 0.
This lemma is still too weak because it only guarantees that if sublevels are

not homotopically equivalent, then there exists a sequence of solutions of perturbed
problems. Nevertheless, if � �= 8k�, as in our case, a compactness result due to
Li [22], comes to our rescue.

Theorem 2.7. If � �= 8k�, k ∈ �, �n → � and �un�n ⊂ H1��� is a sequence of
solutions of (1.1) relative to �n such that

∫
�
heudVg = 1, then �un�n admits a

subsequence converging in C2 to a solution of (1.1) relative to �.

To establish this result it is crucial a theorem of Brezis and Merle [4], and its
completion given by Li and Shafrir [23], concerning the blow up of solutions to

−�wn = Vn�x�e
wn on � ⊂ �2	

In particular in [23] it is proved that in case of blow up

Vne
wn ⇀

m∑
i=1

8�mi�xi �

where mi ∈ � and xi ∈ �. A similar result holds for compact surfaces and moreover
in [22] it is shown that mi = 1 for any i. From these considerations Theorem 2.7
follows immediately.

So, employing together Lemma 2.6 and Theorem 2.7 (just considering the
right normalization), it is immediate to establish a strong result concerning our
functional I�, through and through analogous to the classical aforementioned
deformation lemma.
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Multiplicity Result 2215

Corollary 2.8. If � �= 8k�, c ∈ � and U is an open neighborhood of Zc, then ∃� > 0
such that Ic+�

� \U can be deformed into Ic−�
� in a way that Ic−2�

� \U holds steady.

In [28] (see also [16]), Corollary 2.8 is used to prove that, since I� stays uniformly
bounded on the solutions of (1.1) (by Theorem 2.7), it is possible to retract the whole
Hilbert space H

1
��� onto a high sublevel Ib� , b � 0. More precisely:

Proposition 2.9. If � ∈ �8k�� 8�k+ 1��� for some k ∈ � and if b is sufficiently large
positive, the sublevel Ib� is a deformation retract of H

1
��� and hence is contractible.

Finally, Corollary 2.8, Proposition 2.9 and the non contractibility of Ia� , a � 0,
see Remark 2.5, allow to establish a general existence result.

Theorem 2.10. If � ∈ �8k�� 8�k+ 1���, there exists a solution of (1.1).

A complete proof of previous theorem can be found in [16], but there the
approach is quite different.

2.3. Lusternik–Schnirelman Category

We recall first the definition of Lusternik–Schnirelman category (category, for
short); then, following [18], we will introduce the more general notion of (Lusternik–
Schnirelman) relative category and state some of its elementary properties. We will
see that this is a powerful tool in critical point theory to obtain multiplicity results.

Let X be a topological space and A a subset of X. The category of A with respect
to X, denoted by catXA, is the least integer k such that A ⊂ A1 ∪ · · · ∪ Ak, with Ai

(i = 1� 	 	 	 � k) closed and contractible in X. We set catX∅ = 0 and catXA = +� if
there are no integers satisfying the demand.

Now let X be a topological space and Y a closed subset of X. A closed subset A
of X is of the kth category relative to Y (we write catX�YA = k� if k is the least positive
integer such that there exist Ai ⊂ A closed and hi � Ai × �0� 1� → X, i = 0� 	 	 	 � k,
such that

(i) A = ⋃k
i=0 Ai

(ii) hi�x� 0� = x ∀i ∀x ∈ Ai

(iii) ∀i ≥ 1

(a) ∃xi ∈ X such that hi�x� 1� = xi
(b) hi�Ai × �0� 1�� ∩ Y = ∅

(iv) i = 0

(a) h0�x� 1� ∈ Y ∀x ∈ A0

(b) h0�y� t� = y ∀y ∈ Y ∀t ∈ �0� 1�.

If one such k does not exist, then we set catX�YA = �.
Starting from the above definition, it is easy to check that the following

properties hold true.

Proposition 2.11. Let A, B and Y be closed subsets of X:

1. if Y = ∅, then A0 = ∅ and catX�∅ = catXA;
2. if A ⊂ B, then catX�YA ≤ catX�YB;
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2216 De Marchis

3. if there exists an homeomorphism � � X → X′ such that Y ′ = ��Y� and A′ = ��A�,
then catX′�Y ′A′ = catX�YA;

4. if X′ ⊃ X ⊃ A and r � X′ → X is a retraction such that r−1�Y� = Y and r−1�A� ⊃ A,
then catX′�YA ≥ catX�YA.

Usually, the notion of category is employed to find critical points of a functional
I on a manifold X, in connection with the topological structure of X. Moreover
a classical theorem by Lusternik–Schnirelman shows that either there are at least
catXX critical points of I on X, or at some critical level of I there is a continuum of
critical points (see, for example, [3]).

This result cannot directly help us because, since we look for critical points
on H

1
�T�, we would take X = H

1
�T� which, clearly, has category equal to 1 (being

contractible).
So we will need a generalization of such a theorem which involves relative

category of sublevels.

Theorem 2.12 ([18]). Let H be a Hilbert space and I ∈ C1�H��� a functional
satisfying the �PS�-condition. If −� < a < b < +� and Za = Zb = ∅, then

#� u ∈ I−1��a� b�� �
I�u� = 0  ≥ catIb�Ia �I
b�	

3. Proof of Theorem 1.2

When � is a flat torus with fundamental cell domain
[− 1

2 �
1
2

]× [
1
2 �

1
2

]
, h ≡ 1 and

�∈ �8�� 4�2�, u = 0 turns out to be a strict local minimum for I�. To show it,
Struwe and Tarantello [33], just observed that the second variation of I� at u = 0 in

direction v ∈ H
1
�T� can be estimated as follows

D2I��0��v� v� = �v�2 − �
∫
�
v2dx ≥

(
1− �

4�2

)
�v�2	 (3.1)

This feature gives the functional a mountain pass geometry and permitted to exhibit
a saddle point of I�, see Theorem 1.1. Moreover, since h is constant, if u is a solution
of (1.3), the functions ux0

�x� �= u�x − x0� still solve (1.3), for any x0 ∈ T ; so from
Theorem 1.1 we can deduce the existence of an infinite number of solutions of (1.3).

Now, we want to investigate what happens perturbing h and g. The same
procedure of [33] ensures the presence of a strict local minimum close to u = 0 and
of a saddle point of

I��u� =
1
2

∫
T
�
gu�2dVg − � log

∫
T
heudVg	 (3.2)

However, if u is a non-trivial critical point we cannot guarantee criticality of the
translated functions ux0

anymore.

3.1. Definition of a New Functional

Let us point out that, if h and g are respectively sufficiently close to 1 and dx2,
there exist r > 0 and a strict local minimum, ū, in Br�0� such that M �= inf I���Br �0�

>
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I��ū� �= m and that D2I��Br �0�
is positive definite. The proof below will actually rely

only on the existence of a local minimum, which is the requirement of Remark 1.3.
Let us consider an increasing cut-off function

� � � → � such that ��x� < −L if x <
I��0�+M

2
and ��x� = x if �x� ≥ M�

where L is a large positive constant to be fixed.
By means of � we are able to construct a new functional Ĩ� which coincides with

I� out of a neighborhood of ū and which assumes large negative values near ū:

Ĩ��u� �=

I��u� if u ∈ H

1
�T�\Br�0�

��I��u�� if u ∈ Br�0�	

The choice of Ĩ�, instead of I�, is convenient because of the greater topological
complexity of its low sublevels; in particular we will use that they are disconnected
(just for the presence of a strict local minimum).

Finally, let us remark that saddle points of Ĩ� are also saddle points of I�, hence
we can limit ourselves to study Ĩ�.

3.2. Estimate by Means of Category

Let X denote the contractible cone over T and let Y be its boundary; they can be
represented as

X = T × �0� 1�
T × �0

� Y = T × ��0 ∪ �1�
T × �0

	 (3.3)

Once � ∈ �8�� 4�2� is fixed, to prove Theorem 1.2 it is sufficient to establish the
following chain of inequalities:

#�critical points of Ĩ� in − L ≤ Ĩ� ≤ b
1≥ cat̃Ib� �̃I−L

�
Ĩb�

2≥ cat̃Ib� ���Y�̃I
b
� (3.4)

3≥ cat̃Ib� ���Y���X�
4≥ cat��X����Y���X�

5≥ catX�YX
6≥ 2�

where � is the homeomorphism on the image defined as follows:

� � X −→ H
1
�T�

�x� t� −→ t ���x�

with L, � e b suitable constants, clearly depending on �, which will be fixed
further on.

The main idea is to estimate the number of critical points in �−L ≤ Ĩ� ≤ b

by the category of Ĩ b� relative to Ĩ−L
� applying Theorem 2.12 (pretending for the

moment that all the hypotheses are fulfilled), then to find in Ĩ b� a set homeomorphic

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
I
S
S
A
]
 
A
t
:
 
1
4
:
3
2
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
0
9



2218 De Marchis

Figure 1. Values attained by Ĩ� on ��X�.

to the topological cone X, whose boundary is contained in Ĩ−L
� (see Figure 1). Next,

proving that there exists a positive constant C̃��b depending only on � and b, such
that it is possible to extend � to Ib�\BC̃��b

, we define a projection of Ĩ b� �= Ib� � onto
��X� (see Subsection 3.3, point 4.). Finally the fifth inequality, which exploits the
homeomorphism �, allows us to reduce the problem to the study of the category of
a finite dimensional space.

Following the notation of [29] we want to show how to extend � , introduced
in (2.6), to all u such that, given an � opportunely fixed, there exists a point p ∈ T

where the function eu concentrates, namely∫
T\Br �p�

eudVg∫
T
eudVg

< �	

In particular we claim that:

given b ∈ �� there exists C̃��b such that it is possible to define � � Ib�\BC̃��b
→ �	

(3.5)

By previous consideration, we only need to prove that if eu does not concentrate,
then �u� is bounded by a constant depending only on � and b. To do this we recall
a lemma, proved in [29].

Lemma 3.1. Let � and r be positive numbers. Suppose that for a non-negative function
f ∈ L1�T� with �f�L1�T� = 1 there holds

∫
Br �p�

fdVg < 1− � for any p ∈ T	

Then there exists �̄ > 0 and r̄ > 0, depending only on � and r (but not on f),
and 2 points p̄1� p̄2 ∈ T (which depend on f) satisfying

∫
Br̄ �p̄1�

f dVg ≥ �̄�
∫
Br̄ �p̄2�

f dVg ≥ �̄� B2r̄ �p̄1� ∩ B2r̄ �p̄2� = ∅	
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Let u ∈ Ib� such that for any p ∈ T

∫
T\Br �p�

eudVg∫
T
eudVg

≥ ��

then Lemma 2.3 implies the existence of two positive numbers �̄ and r̄

(independent of u) and two points p̄1 and p̄2 (which instead depend on u) such that

∫
Br̄ �p̄i�

eudVg∫
T
eudVg

≥ �̄ for i = 1� 2 and B2r̄ �p̄1� ∩ B2r̄ �p̄2� = ∅	

So we can apply Lemma 2.2 with �0 = 2r̄, �i = Br̄�p̄i� and �0 = min��̄� 1
3 �; in

particular, choosing �̃ such that 4�2

32�−�̃
< 1

2 , we obtain the existence of a constant

K = K��� r� such that, for any u ∈ H
1
�T�,

log
∫
T
eudx ≤ K + 1

32�− �̃

∫
T
�
u�2dx	

Then

b ≥ I��u� ≥
1
2

∫
T
�
u�2dx − �K − �

32�− �̃

∫
T
�
u�2dx ≥ a�u�2 − �K�

where a = 1
2 − �

32�−�̃
> 0. At last, as K does not depend on u, the claim is proved.

Let us fix some constants: we choose L in such a way that, for any � large
enough such that T� ⊂ Ĩ−L

� , the map x → �����x� is homotopic to the identity; then

we fix b sufficiently large so that ��X� ⊂ Ĩ b� , I
b
� is a deformation retract of H

1
�T�

(Proposition 2.9) and so as to have max I���B2r �0�
≤ b, where r is as in Subsection 3.1;

by this choice Ĩ b� = Ib� . Moreover without any loss of generality we can assume
that neither −L nor b are critical levels. In the end we take � such that following
conditions are both verified: T� ⊂ Ĩ−L and minx∈T ����x� > C̃��b, where C̃��b is the
constant determined in the previous claim.

3.3. Proof of the Inequalities in (3.4)

To get Theorem 1.2 it remains only to prove the inequalities in (3.4).

1	 #
{
critical points of Ĩ� in

{− L ≤ Ĩ� ≤ b
}} ≥ cat̃Ib� �̃I−L

�
Ĩb�

As we do not know if the �PS�-condition is satisfied, we cannot appeal to
Theorem 2.12; however it is crucial to remark that, in the proof of the
aforementioned theorem ([18]), the �PS�-condition is used only twice to apply the
classical Deformation Lemma (see for example [3] or [13]). It is easy to see that both
times Corollary 2.8 comes to our rescue. The only important thing to remark is that
in the neighborhood of the origin, where Ĩ� differs from I� (and so we cannot apply
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the corollary), we can deform along the flux generated by a cutoff of the opposite
of the gradient.

2	 cat̃Ib� �̃I−L
�
Ĩb� ≥ cat̃Ib� ���Y�̃I

b
�

It is worth pointing out that in the hypotheses of Theorem 1.2 (merely when g
is sufficiently close to dx2 and h to 1), the map � introduced in (2.6) turns out to be
a diffeomorphism between T� and �. So we can define a diffeomorphism � � � → �
such that �������x�� = x.

Next, reminding that Ĩ−L
� is the disjoint union of I−L

� and a neighborhood U of
the origin, we can consider the following map:

� � Ĩ−L
� −→ ��Y�

u −→ �������u�� u ∈ I−L
�

u −→ 0 u ∈ U	

Now, our purpose is to find a deformation retract
(
in Ĩ b�

)
of Ĩ−L

� onto ��Y�.
First of all, let us set

� � Ĩ−L
� × �0� 1� −→ H

1
�T�

�u� t� −→ �1− t�u+ t��u�	

Then, thanks to our choice of b we know that Ĩ b� ≡ Ib� is a deformation retract of

H
1
�T�, namely there exists a continuous map � � H

1
�T� → Ĩ b� such that ��̃Ib� = Id�̃Ib� .

So composing � and � we get the map
(
h �= � � � � Ĩ−L

� × �0� 1� → Ĩ b�
)
we were

looking for. Indeed, for any u ∈ Ĩ−L
� , h�u� 0� = u and h�u� 1� = ��u� ∈ ��Y�, while,

for any �y� t� ∈ ��Y�× �0� 1�, h�y� t� = y (being ����Y� = Id���Y�).
At last, if Ai and hi

(
i = 1� 	 	 	 � cat̃Ib� �̃I−L

�
Ĩb�
)
fulfill the conditions of the definition

of relative category for cat̃Ib� �̃I−L
�
, it is easy to prove that A0, h ∗ h0 and Ai, hi (i≥ 1)

verify the definition of category for cat̃Ib� ���Y�̃I
b
� , where h ∗ h0 � A0 × �0� 1� → Ĩ b� is

defined as follows:

h ∗ h0�x� t� �=



h�h0�x� 2t�� 0� t ≤ 1

2

h�h0�x� 1�� 2t − 1� t ≥ 1
2
	

3	 cat̃Ib� ���Y�̃I
b
� ≥ cat̃Ib� ���Y���X�

It is a merely map of the Point 2 of Proposition 2.11.

4	 cat̃Ib� ���Y���X� ≥ cat��X����Y���X�

Thanks to Proposition 2.11, Point 4, if we construct a continuous map r � Ĩb� →��X�
such that r���X� = Id���X� and that r−1���Y�� = ��Y�, we are done. Let us define
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C��b �= minx∈T ����x�, which is bigger than C̃��b, according to our choice of �; then

we are able to define � and also � on the set
{
v ∈ H

1
�T� � �v� ≥ C��b

}
.

Therefore the following map is well defined:

r � Ĩb� −→ ��X�

0 −→ 0

u ∈ ��v� ≥ C��b −→ ��distx∈T �u� ���x�� ��u�

u ∈ ��v� ≤ C��b −→
�u�
C��b

r

(
C��b

�u� u
)
�

where � � � → � is a smooth strictly decreasing function, such that ��0� = 1
and ��� 12 �+��� = 1

3 .
Finally it is easy to verify that r is continuous and such that r���X� = Id���X�

and r−1���Y�� = ��Y�.

5	 cat��X����Y���X� ≥ catX�YX

We just need to use Point 3 of Proposition 2.11, since � is an homeomorphism on
the image.

6	 catX�YX ≥ 2

Let consider the closed sets Ai verifying the conditions of the definition of relative
category.

First of all, we claim that A0 is disconnected. This will be enough to guarantee
that catX�YX ≥ 1, because otherwise it would be A0 = X, which is connected.

Let us denote by Y0 �= T × �0/T × �0 and Y1 �= T × �1/T × �0 the two
disconnected components of Y .

By definition we know that Y0 ∪ Y1 = Y ⊂ A0 and that there exists h0 � A0 ×
�0� 1� → X continuous with the properties: h0�A0� 1� ⊂ Y and h0�Y×�0�1� ≡ IdY . Now,
if A0 was connected we would get a contradiction because h0�A0� 1� would be
connected (by continuity of h0) and disconnected being the union of Y0 and Y1.

Thus we can consider the connected component B of A0 containing Y1 and its
complementary in A0, C �= A0\B; these sets are both closed, so we can make use of
the following lemma.

Lemma 3.2 (Urysohn). Let X be a finite dimensional vector space; given B, C ⊂ X
closed, there exists � � X → �, � ∈ C�, such that ��x� = 1 for any x ∈ B, ��x� = 0
for any x ∈ C and ��x� ∈ �0� 1� for any x ∈ X\�B ∪ C�.

Applying Sard Lemma to f �= ��T×�0�1� (where � � �3 → � is given by Urysohn
Lemma), we get the existence of a value a ∈ �0� 1� such that �f = a is a 2-manifold.
We stress that �f = a ⊂ X\A0 and �f = a disconnects Y0 and Y1, being f�Y0 = 0
and f�Y1 = 1.

Always applying Sard Lemma to

g � T × �0� 1� −→ S1
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��x1� x2�� t� →
(
cos�2�x1�
sin�2�x1�

)
(3.6)

we can deduce that there exists �̄ ∈ S1 such that M �= ��x� t� ∈ �f = a � g�x� t� = �̄
is a 1-manifold; in particular M is the union of a finite number of submanifolds
diffeomorphic to S1: M = ⋃j

i=1 Mi.
Now, to get our thesis it will be enough to show that at least one Mi is

non-contractible inX\Y , sinceM ⊂ �f = a ⊂ X\A0.Moreover we can limit ourselves
to prove non-contractibility in �\Y , where � = ��x� t� ∈ T × �0� 1� � g�x� = �̄.

Using again Urysohn Lemma (with Bi = Mi and Ci = � ∩ Y ) and Sard Lemma,
we obtain j 2-manifolds with boundary, Ni �= �fi ≥ ai�> 0�; clearly it is possible
to choose ai in such a way that Ni are pairwise disjoint and contractible in �.
Let denote by Wik

, k = 1� 	 	 	 � li, the connected components on the boundary of Ni.
Then, there will be a point x such that the segment s connecting �x� 0� and �x� 1�

intersects in an even number of points each Wik
. Let us define a path �. Starting

from �x� 0� let us follow s up to its first (possible) intersection with a Wik
; now, the

previous arguments ensure that it is possible to follow Wik
up to its intersection with

s closest to �x� 1�, which by our choice of s is different from the first one. Finally,
repeating this procedure a finite number of times, we will reach �x� 1� (see Figure 2).

We got then a contradiction because we constructed a curve � connecting Y0
and Y1 which does not intersect M .

Figure 2. If by contradiction every Mi is contractible in � 	 	 	 .
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Remark 3.3. We believe that, if X, Y are as in (3.3), with T replaced by any
compact topological space Z, we should have catX�YX ≥ catZZ; so in our case we
expect that in 6	 the relative category should be 3. This would lead the existence of
a third solution in Theorem 1.2.

To support this argument, one can reason as follows: calling u the critical
point found in [33] for g = ds2 and h = 1, the family �ux0

�·� = u�· − x0�� x0 ∈ T
constitutes a torial manifold of solutions to (1.3). If this manifold turned out to
be non degenerate, in the sense that Ker I ′′� �u0� = Span

{
�u
�x
� �u

�y

}
, (which is generally

expectable) then it would be possible to apply the perturbative methods [2] for data
close to the constant ones (see also [1]). In particular, Corollary 2.13 in the latter
reference guarantees the existence of catTT critical points.
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